Приложение на Теорията на Размитата Логика при Моделирането на Бизнес Процеси и Вземане на Управленски Решения

Fuzzy Logic Applications to Modeling of Business Processes and Management Decision Making

Ганчо Вачков (Gancho Vachkov)
International Business School (IBS)
Distance Learning Center, Sofia
E-mail: gvachkov@ibsedu.bg
gancho.vachkov@gmail.com

Public Lecture

IBS
February 21st, 2018
Short Biographical Notes:

• **Education:** Control Engineer -TU-Sofia (1965); Ph.D. – 1978 (UCTM-Sofia)

• **Work Experience:**
 - *Bulgaria*, Sofia - University of Chemical Technology and Metallurgy (1970 - 1996);

- **Currently:** International Business School (IBS), Botevgrad; Distance Learning Center, Sofia
Work Locations on the World Map:
Map of Teaching Locations in Japan

- Kitami Institute of Technology
- Nagoya University
- Kagawa University
- Yamaguchi University
Research Interests:

• Fuzzy Logic Control and Applications
• Fuzzy and Neural Modeling – Industrial and Robotics Applications
• Data Clustering and Unsupervised Algorithms
• Intelligent Data Analysis and Evolving Systems
• Learning Algorithms and Multi-agent Methods for Optimization
• Fault Diagnosis in Industrial and Complex Systems
• Performance Evaluation and Monitoring
Outline of the Presentation

• Historical Remarks about Fuzzy Logic and Systems
• The Concept of Fuzzy Sets, Membership Functions, Membership Degree, Linguistic Variables
• Structure of the Fuzzy Rules and Fuzzy Rule Base
• Content of the Parameter Base
• General Structure of the Fuzzy Decision Making Unit (FDMU)
• Calculation Steps of the FDMU: Fuzzification, Fuzzy Inference and De-Fuzzification
• General Structure of the Fuzzy Logic Controller – examples
• Some Details, Considerations and Discussions
Historical Remarks on Fuzzy Logic and Fuzzy Systems

- Fuzzy Sets – Lotfi Zadeh (1965)
- Fuzzy Control and Applications – E. Mamdani (UK, 1974); T. Yamakawa (Japan, 1986)
- Fuzzy Modeling and Decision Making – Michio Sugeno (Japan); Takagi-Sugeno (TS) Fuzzy Model (1985)

Supporting Algorithms used in Fuzzy Logic:

Learning Algorithms and Multi-agent **Optimization Algorithms**: Particle Swarm Optimization (PSO); Genetic Algorithms (GA); **Clustering Algorithms**
History of Fuzzy Sets

FUZZY SETS THEORY & APPLICATIONS

1965 - Lotfi ZADEH
(Berkeley University, California, USA)
1974 - A. Mamdani (UK) - Fuzzy Control

[Graph showing membership functions for short and tall people, with a universal set of all people and a Crisp Set (Yes-No) versus Fuzzy (smooth) Set membership degrees [0,1]]
Fuzzy Sets and Ordinary (Crisp) Sets

Fuzzy Sets versus the Ordinary (Crisp) Sets

THREE Linguistic Variables

Membership Function for 3 Linguistic Variables: Cold, Warm and Hot Bath Tube Water.
Human Experts use Fuzzy Logic and Fuzzy Rules in Decision Making

Humans use knowledge from the type of heuristic rules in their everyday life to solve different problems!

Humans do not like pure mathematics!

Heuristic rules are from the type:

If <conditions> then <conclusions>
If <causes> then <effects>
If <action> then <response, reaction>
Inverted Pendulum – Typical Example of a Fuzzy Logic Control

RULE: IF (THE STICK IS MOVING FORWARD)
THEN (MOVE the CART FORWARD)
Basic Notions in Fuzzy Logic

Fuzzy Set – it corresponds to a respective predefined **Linguistic Variable** (name) with its predefined **Membership Function**

Example:

A Fuzzy Set is represented by the **Linguistic Variable** (name assigned by human) - **Medium**

The respective **Membership Function** is assumed as smooth **Gaussian Function**:
Basic Notions in Fuzzy Logic (2)

Normally, each Process Variable (usually an Input of a Process or System) is observed by Human or measured by a Sensor as a real numerical value. We discretize the whole range of this variable to a predefined number of Fuzzy Sets with given Linguistic Variables and their respective Membership Functions.

Example: The Real measured variable is: **Temperature** with three Linguistic Variables: **Low, Medium, High** and their respective Membership Functions, assumed as Gaussian Type.
Three Gaussian Membership Functions assigned by Human for the Process Parameter: Temperature

Observed Process Parameter: Temperature
General Structure of the Fuzzy Decision Making Unit (FDMU)

- **Inputs**: X_1, X_2, \ldots
- **Fuzzification**
 - Fuzzification (FZ)
- **Fuzzy Inference**
 - Fuzzy Inference (FI)
- **De-Fuzzification**
 - De-Fuzzification (DF)
- **Parameter Base**
- **Output**: Y

Размиване → Формиране на Извод → Де-Размиване
Structure of the Fuzzy Rule Base

It consists of a List of Fuzzy Rules with the following If-Then Format:

IF (Antecedent) **THEN** Consequent

IF (Situation) **THEN** Decision

(Condition) (Action)

Example for a Fuzzy Rule to control the Temperature of a Boiler (Heat-Exchanger):

IF (Temperature is *Low* AND Flowrate is *Medium*)

THEN Open *Slightly* the Valve (to increase the Heat)

(The Control Action)
Two types of Fuzzy Rules

1) Fully **Linguistic Fuzzy Rules** (Mamdani type Fuzzy Rules)

IF (X1 is *Low* AND X2 is *Big*) **THEN** Y is *Medium*

X1, X2 and Y are represented by **Linguistic Variables**

2) Semi **Linguistic Fuzzy Rules** (*Takagi-Sugeno* type of Fuzzy Rules) with **Singletons** (Real Numbers) as Output

IF (X1 is *Low* AND X2 is *Big*) **THEN** Y = 12.50

(Crisp Value)

X1, X2 are represented by **Linguistic Variables** and Y is a real (crisp, numerical) value, called **Singleton**
Membership Functions

They are defined for each Input separately!

Example: FDMU with two Inputs X_1 and X_2 and One Output Y

3 Membership Functions, Defined for the Input X_1

- Small SM;
- Medium MD,
- Large LG

Gaussian Type (smooth) Membership Functions

5 Membership Functions, defined for the Input X_1

- Very Small VS,
- Small SM,
- Medium MD,
- Large LG,
- Very Large VL
Fuzzy Rule Base (FRB) of the Fuzzy Decision Making Unit (FDMU)

Example:

3 \times 5 = \textbf{15} Fuzzy Rules

For the Output Y, The following 5 Linguistic Variables have been defined:

VS – Very Small
SM – Small
MD – Medium
LG – Large
VL – Very Large

Fuzzy Rule base is created by a Human EXPERT!
Types of Membership Functions used for Fuzzy Modeling and Fuzzy Control

• Gaussian Membership Functions (mainly for Fuzzy Modeling)
 \[A_i(x) = \exp \left(-\frac{(x-c_i)^2}{2\sigma_i^2} \right), \quad i=1,2,...,L \]

• Triangular Membership Functions (Fuzzy Control)

• Trapezoidal Membership Functions (Fuzzy Control)

• Any other type and shape, given by the Human Expert (mostly for Decision Making)
The Parameter Base

• This is the complete set of parameters that are involved in the calculation steps of the FDMU. The appropriate tuning of all these parameters (or at least part of them) is mandatory! This tuning improves significantly the performance (desired output) of the FDMU. Otherwise the FDMU has no meaning!

• The List of these Parameters includes:
 - The number of the assumed Linguistic Parameters for each Input and for the Output (level of granulation);
 - Parameters controlling the Locations of the Membership Functions (e.g. Center, Left Boundary, Right boundary);
 - Parameters controlling the Shape of the Membership functions (e.g. width, steepness etc.);
 - Assumed Values of the Singletons representing the Outputs of the Fuzzy Rules.
1) Fuzzification FI

This is a computational step of Mapping (a correspondence) between a given “crisp” numerical value of the Input (e.g. a real measurement from a sensor) and all the respective Membership Degrees for all assumed Linguistic Variables for this Input.

These Membership Degrees (each of them a real number between 0.0 and 1.0) are easily calculated from the respective algebraic equations of the Membership Functions (e.g. Gaussian Function, Triangular function, Trapezoidal Function, Bell Function etc.)

In short: Fuzzification is a Mapping procedure of the type: One to Many, that is:

One real value of the Input corresponds to \(L \) membership degrees, calculated from all \(L \) Membership Functions, defined for this Input.
Example of Fuzzification

\[X1 = 20 \]
\[L = 3 \]
\[f_{SM} = 0.02 \]
\[f_{MD} = 0.70 \]
\[f_{LG} = 0.55 \]
\[\sum = 1.27 \]

\[X2 = 0.30 \]
\[L = 5 \]
\[f_{VS} = 0.04 \]
\[f_{SM} = 0.90 \]
\[f_{MD} = 0.25 \]
\[f_{LG} = 0.00 \]
\[f_{VL} = 0.00 \]
\[\sum = 1.19 \]
Result of the Fuzzification Step (the Mapping) for this Example:

Input 1

\[X_1 = 20 \]

\[f_{SM} = 0.02 \]
\[f_{MD} = 0.70 \]
\[f_{LG} = 0.55 \]

Membership Degrees:
\[\sum = 1.27 \]

Input 2

\[X_2 = 0.30 \]

\[f_{VS} = 0.04 \]
\[f_{SM} = 0.90 \]
\[f_{MD} = 0.25 \]
\[f_{LG} = 0.00 \]
\[f_{VL} = 0.00 \]

Membership Degrees:
\[\sum = 1.19 \]
2) Fuzzy Inference

This is the first part of the process of Fuzzy Decision Making. The aim is to calculate the so called Truth Value Tv of each Fuzzy Rule from the Fuzzy Rule Base (FRB). The Tv is also called: Strength, Firing Degree, Activation Degree. Note that in the Fuzzy Sets concept, we are dealing with not only the two crisp cases 0.0 and 1.0 like:

- $Tv = 0.0 \rightarrow$ The Fuzzy Rule is not Activated (not true)
- $Tv = 1.0 \rightarrow$ The Fuzzy Rule is fully Activated (true)

but also with all intermediate values, in which the Activation Degree is a real number between 0.0 and 1.0, for example:

- $Tv = 0.7 \rightarrow$ The Fuzzy Rule is strongly Activated (i.e. this Rule is quite true)
- $Tv = 0.3 \rightarrow$ The Fuzzy Rule is a little Activated (not very true)
Different Operations of the Fuzzy Inference

There are two main operations in the Fuzzy Inference procedure:

Min Operation and *Product Operation*

(as explained below)

The *Product Operation* is most frequently used, because it is more sensitive to any changes in the inputs X_1 and X_2.

Therefore the Product Operation is the preferred choice not only for Fuzzy Control applications, but also for various Fuzzy Modeling Applications.
The Two Operations to calculate the Truth Value Tv of a given Fuzzy Rule:

1. **Min** Operation

 $$Tv = \min\{f_{x_1}, f_{x_2}\}$$

2. **Product** Operation

 $$Tv = f_{x_1} \times f_{x_2}$$

Here $0.0 \leq f_{x_1} \leq 1.0$ and $0.0 \leq f_{x_2} \leq 1.0$

are the calculated fuzzy membership degrees for the two linguistic variables (one for the Input X_1 and another for the Input X_2) that participate in this Fuzzy Rule.

Example: IF{X_1 is SM AND X_2 is MD} THEN Y is MD
Calculating the Truth Values of the Fuzzy Rules for given Inputs of X_1 and X_2:

$X_1 = 20$ and $X_2 = 0.30$

A) Min Operation

Fuzzy Rule: IF(X_1 is LG AND X_2 is MD) THEN Y is LG

$f_{LG} = 0.55; \ f_{MD} = 0.25; \ Tv = \min\{0.55, 0.25\} = 0.25$

Fuzzy Rule: IF(X_1 is MD AND X_2 is SM) THEN Y is MD

$f_{MD} = 0.70; \ f_{SM} = 0.90; \ Tv = \min\{0.70, 0.90\} = 0.70$

B) Product Operation

Fuzzy Rule: IF(X_1 is LG AND X_2 is MD) THEN Y is LG

$f_{LG} = 0.55; \ f_{MD} = 0.25; \ Tv = 0.55 \times 0.25 = 0.1375$

Fuzzy Rule: IF(X_1 is MD AND X_2 is SM) THEN Y is MD

$f_{MD} = 0.70; \ f_{SM} = 0.90; \ Tv = 0.70 \times 0.90 = 0.6300$
Activation T_v of All Fuzzy Rules for the Inputs: $X_1 = 20$ and $X_2 = 0.3$

Assumed Singletons (Consequents) of the Fuzzy Rules:
- VS = 0.5
- SM = 1.5
- MD = 3.0
- LG = 5.0
- VL = 8.0

Activation Levels of All Rules:

$T_v [0.0 \leftrightarrow 1.0]$

<table>
<thead>
<tr>
<th>X1</th>
<th>SM</th>
<th>MD</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LG</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MD</td>
<td>0.005</td>
<td>0.175</td>
<td>0.1375</td>
</tr>
<tr>
<td>SM</td>
<td>0.018</td>
<td>0.630</td>
<td>0.495</td>
</tr>
<tr>
<td>VS</td>
<td>0.0008</td>
<td>0.028</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Singletons of all Fuzzy Rules (the Consequents):

<table>
<thead>
<tr>
<th>X1</th>
<th>SM</th>
<th>MD</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>5.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>LG</td>
<td>3.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>MD</td>
<td>3.0</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>SM</td>
<td>1.5</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>VS</td>
<td>0.5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>
3) Defuzzification

This is the third (final) computation step and the second part of the decision making procedure of the FDMU. Defuzzification is a process, in which the final decision (final output) of the FDMU is represented as a crisp (real) value Y for any further use (for example: for real Control Output). This is done by a kind of Aggregation of all the local outputs of all Fuzzy Rules in the FRB. The idea is that all fuzzy rules contribute to some degree (between 0.0 and 1.0) to the final decision and we have to blend their local solutions in order to produce the Global one.
Defuzzification (2)
The semi-linguistic type of Fuzzy Rules have Linguistic variables as Antecedents and Singletons (real values) as Consequents. They are currently the most often used type of Fuzzy Rules. Especially, the famous Takagi-Sugeno (TS) Fuzzy Models and TS Fuzzy Controllers use these types of Fuzzy Rules.

Fuzzy Rule i: IF (X1 is Low AND X2 is Big) THEN

\[Yi = 10.0 \] (Singleton) \leftarrow \text{Local Output of this Fuzzy Rule}

If the case of Semi-Lingustic Fuzzy Rules for Fuzzy Control or Fuzzy Modeling, the following Weighted Average Defuzzification method is used to calculate the final output from the FDMU:
The Weighted Average Method for Defuzzification

\[Y = \frac{\sum_{i=1}^{L} y_i T v_i}{\sum_{i=1}^{L} T v_i} \]

The final Real Output from the Fuzzy Decision Making Unit (FDMU)

- \(Y \) – The final Real Output from the Fuzzy Decision Making Unit (FDMU)
- \(y_i \), \(i = 1, 2, ..., L \) – The Consequents (Singletons) of all Fuzzy Rules
- \(T v_i \), \(i = 1, 2, ..., L \) – The Activation Degrees (Truth Values) of all Fuzzy Rules

Note: In the particular case of using Triangular Membership Functions for all inputs that overlap at a membership degree 0.5, the denominator is always 1.0 and can be omitted (Why?). This is the often case in designing the Fuzzy Logic Controllers.
Example of using **Normalized Triangular Membership Functions** that overlap at a Membership Degree of **0.5**

Input1 with 3 Membership Functions

For any given pairs of Inputs X_1 and X_2, only 4 Fuzzy Rules from the FRB will be activated! *Why?*

Input2 with 5 Membership Functions

$L = 3 \times 5 = 15$ Fuzzy Rules
The Fuzzy Controller as a FDMU
How does it work?

• This is a special (concrete) type of Fuzzy Decision Making Unit (FDMU) with **Two-Inputs** and **One-Output**, as follows:

 • Input X1 is the **Current Error**: \(E(k) = R(k) - Y(k) \)

 • Input X2 is the **Change-of-Error**: \(DE(k) = E(k) - E(k-1) \)

 • The Output Y is the **Change-of-Output**: \(DU(k) \)

 \(k \) represents the **current sampling time** instance

 • The calculated Control Action of the Fuzzy Controller at this current sampling \(k \) will be:

 \[
 U(k) = U(k-1) + DU(k)
 \]
Fuzzy Rule Base for a Standard (Feed-Back) Fuzzy Controller

Type 7-7-7

<table>
<thead>
<tr>
<th>Change of Error: (DE(k))</th>
<th>PL</th>
<th>ZR</th>
<th>PS</th>
<th>PS</th>
<th>PM</th>
<th>PL</th>
<th>PL</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>NS</td>
<td>ZR</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td>PM</td>
<td>PM</td>
<td>PL</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZR</td>
<td>PS</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>ZR</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>ZR</td>
<td>PS</td>
<td>PM</td>
<td>PL</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZR</td>
<td>PS</td>
<td>PM</td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>NL</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>ZR</td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NM</td>
<td>NS</td>
<td>NS</td>
<td>ZR</td>
<td></td>
</tr>
</tbody>
</table>

| Error: \(E(k) \) | NL | NM | NS | ZR | PS | PM | PL |

Linguistic Variables for Input 1 (Error): 7
Linguistic Variables for Input 2 (Change-of-Error): 7
Linguistic Variables for the Output (Change-of-Output): 7

FRB Represents the Expert Knowledge About Control
Control Surface of a 7-7-7 type Fuzzy Controller with different parameter settings:

Membership Functions for the Error:
-1.00 -0.3333 -0.1111 0.0 +0.1111 +0.3333 +1.0

Membership Functions for the Change-of-Error:
-1.00 -0.3333 -0.1111 0.0 +0.1111 +0.3333 +1.0

Output with 7 Singletons:
-1.0; -0.6666; -0.3333; 0.0; 0.3333; 0.6666; +1.0;
Control Surface of a 7-7-7 type Fuzzy Controller with different parameter settings:

Membership Functions for the **Error:**
-1.00 -0.666 -0.333 0.0 +0.333 +0.666 +1.0

Membership Functions for the **Change-of-Error:**
-1.00 -0.666 -0.333 0.0 +0.333 +0.666 +1.0

Output with 7 Singletons:
-1.0; -0.666; -0.333; 0.0; 0.333; 0.666; +1.0;
Control Surface of a 7-7-7 type Fuzzy Controller with different tunings:

Membership Functions for the Error:
-1.00 -0.333 -0.111 0.0 +0.111 +0.333 +1.0

Membership Functions for the Change-of-Error:
-1.00 -0.333 -0.111 0.0 +0.111 +0.333 +1.0

Output with 7 Singletons:
-1.0; -0.333; -0.111; 0.0; 0.111; 0.333; +1.0;
Control Surface of a 7-7-7 type Fuzzy Controller with different tunings:

Membership Functions for the **Error:**

-1.00 -0.900 -0.700 0.0 +0.700 +0.900 +1.0

Membership Functions for the **Change-of-Error:**

-1.00 -0.900 -0.700 0.0 +0.700 +0.900 +1.0

Output with 7 Singletons:

-1.0; -0.666 -0.333; 0.0; 0.333; 0.666; +1.0;
Main Characteristics and Tuning Issues of the Fuzzy Logic Controller (FC, FLC)

- The FC has a highly flexible and nonlinear structure that works as **Universal Approximator**. This property has been proven theoretically and means that the FC is able to approximate **any kind of nonlinearity** (in the Plant or in the Controller itself) with any predefined accuracy. This is the FC’s **strongest merit**, compared to many other controllers and control methods.

- The (FC) contains quite many parameters that affect its performance. So, **precise tuning** of the FC is required for achieving good results. This is a challenging task that can be solved by using some of the recent Multi-Agent Methods for Optimization, such as GA, PSO, ACO and others.
Simplified Two-stage Tuning (Optimization) of the Fuzzy Controller

This is a strategy that gives satisfactory (not necessarily global optimal) results and consists of the following two consecutive steps:

• **Structure Optimization**. It includes tuning the number of Linguistic Variables for each Input, the number of the Singletons (Consequents, Outputs) of the Fuzzy Rules in the FRB.

• **Parameter Optimization**. It includes tuning all parameters in the Parameter Base for a given fixed state of the Structure parameters.

• Obviously this often leads to local optimum solutions, but in many cases they are considered as satisfactory practical solutions.
Summary: the Merits and Demerits of the Fuzzy Logic Controller

+
-

• Fuzzy Logic is an excellent tool for Fuzzy Logic Control of any type of complex and high nonlinear plants.
• Such Controller does not require detailed knowledge about the Process Dynamics.

• However, the Fuzzy Controller has many parameters that should be properly tuned. This is a big hurdle and challenging task that requires the use of good Optimization tool.

• So, keep trying!
Discussions, Questions and some Answers

We have so far understood that the Fuzzy Logic calculations are based on the existence of a Fuzzy Rule Base.

Q) How to obtain the Fuzzy Rule Base?
A) From a Human Expert in the respective area (Interview);

Q) What will happen if there are several (many) Experts and their opinion (decision making) differs from each other?
A) There will be several different solutions to the same problem, produced by the respective Fuzzy Rule Bases;

Q) How to create a Fuzzy Rule Base, IF there so NO Expert to tell the Rules (e.g. in the case of a New Process)?
A) Well, this is a problem that can be solved by using available Data from the operation of the real process (from Data to Knowledge);
END of the Fuzzy Logic Preliminaries

New Questions?

Some Ideas for Interesting Applications of Fuzzy Logic (e.g. in Robotics, Business, etc.)?

Tired?

Need a Short Break?
A) Applications of the Fuzzy Logic in the Robotics Area (Mobile Robots Navigation)

Solving the Obstacle Avoidance Problem in Robotics by using Fuzzy Logic Controller

Statement of the Problem:
Tuning of the Fuzzy Controller of a Mobile Robot for Obstacle Avoidance in unknown (unstructured) Environment
The Obstacle Avoidance Problem

Robot Trajectories

Static Obstacles

Environment

Experiments
Configuration of Three Distance Sensors

- Three distance sensors
- Two pointing at an angle of 45 degrees
- One pointing straight
- Range of the sensor is S_R
Basic Assumptions:

- 3 Sensors for measuring the Proximity are used: Left (LS), Middle(MS) and Right (RS)

- Fuzzy Rule Base with Semi-Linguistic Fuzzy Rules with **Singletons** (Takagi-Sugeno type) is used;

 The Fuzzy Rule Structure:

 IF (Left Sensor shows **Far** AND Middle Sensor shows **Near** AND Right Sensor shows **Close**)
 THEN
 Change-of-the-steering Action is: **Negative Small** (Singleton)
Three Triangular Membership Functions assumed for Each Sensor

Left Sensor Input: \(X_1 \)

Right Sensor Input: \(X_3 \)

Middle Sensor Input: \(X_2 \)

3 Linguistic Variables used:
- \(F \) – Far;
- \(N \) – Near;
- \(C \) – Close
The Outputs of the Fuzzy Rules are **Singletons** (Numerical Values, Voltage, PWM)

Linguistic Expressions of the Singletons:

- **NB** – Negative Big
- **NM** – Negative Medium
- **NS** – Negative Small
- **ZR** – Zero
- **PS** – Positive Small
- **PM** – Positive Medium
- **PB** – Positive Big

We assume that All Singletons values are within the Range: [-1.0, +1.0]

Numerical Expressions of the Singletons:

<table>
<thead>
<tr>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZR</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-0.67</td>
<td>-0.33</td>
<td>0</td>
<td>0.33</td>
<td>0.67</td>
<td>1</td>
</tr>
</tbody>
</table>
Proposed Fuzzy Controller Structure
3D Fuzzy Rule Base For Obstacle Avoidance

3 x 3 x 3 = 27 Fuzzy Rules

<table>
<thead>
<tr>
<th>Fuzzy Rule</th>
<th>Left Sensor</th>
<th>Middle Sensor</th>
<th>Right Sensor</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R3{NS, ZR, PS}</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>N</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>N</td>
<td>F</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>N</td>
<td>N</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>N</td>
<td>C</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>C</td>
<td>N</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>F</td>
<td>F</td>
<td>R1{PM}</td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>12</td>
<td>N</td>
<td>F</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>N</td>
<td>F</td>
<td>R1{PM}</td>
</tr>
<tr>
<td>14</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>15</td>
<td>N</td>
<td>N</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>16</td>
<td>N</td>
<td>C</td>
<td>F</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>17</td>
<td>N</td>
<td>C</td>
<td>N</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>18</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
</tbody>
</table>

Outputs of the Fuzzy Rules:

- **NS** – Negative Small;
- **PS** – Positive Small;
- **ZR** – Zero;
- **NM** – Negative Medium;
- **PM** – Positive Medium;

<table>
<thead>
<tr>
<th>Fuzzy Rule</th>
<th>Left Sensor</th>
<th>Middle Sensor</th>
<th>Right Sensor</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>C</td>
<td>F</td>
<td>F</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>F</td>
<td>N</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>N</td>
<td>F</td>
<td>R1{PM}</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>N</td>
<td>N</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>N</td>
<td>C</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>R2{NB, PB}</td>
</tr>
</tbody>
</table>

3D Fuzzy Rule Base For Obstacle Avoidance

3 x 3 x 3 = 27 Fuzzy Rules

<table>
<thead>
<tr>
<th>Fuzzy Rule</th>
<th>Left Sensor</th>
<th>Middle Sensor</th>
<th>Right Sensor</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R3{NS, ZR, PS}</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>N</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>N</td>
<td>F</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>N</td>
<td>N</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>N</td>
<td>C</td>
<td>R1{NM}</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>C</td>
<td>N</td>
<td>R1{PB}</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>C</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>F</td>
<td>F</td>
<td>R1{PM}</td>
</tr>
<tr>
<td>11</td>
<td>N</td>
<td>F</td>
<td>N</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>12</td>
<td>N</td>
<td>F</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>N</td>
<td>F</td>
<td>R1{PM}</td>
</tr>
<tr>
<td>14</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R2{NM, PM}</td>
</tr>
<tr>
<td>15</td>
<td>N</td>
<td>N</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>16</td>
<td>N</td>
<td>C</td>
<td>F</td>
<td>R1{NB}</td>
</tr>
<tr>
<td>17</td>
<td>N</td>
<td>C</td>
<td>N</td>
<td>R2{NB, PB}</td>
</tr>
<tr>
<td>18</td>
<td>N</td>
<td>C</td>
<td>C</td>
<td>R1{NB}</td>
</tr>
</tbody>
</table>

Outputs of the Fuzzy Rules:

- **NS** – Negative Small;
- **PS** – Positive Small;
- **ZR** – Zero;
- **NM** – Negative Medium;
- **PM** – Positive Medium;
Simulations Results from the Robot Performance in Different Environments

Obstacle Avoidance of the Mobile Robot
B) Fuzzy Logic Application in the Area of Decision Making in the Real Estate Business

The Task: Fuzzy Decision Making for estimation of the Selling Price of a Property (Apartment) within a given City Location

The City area of Sofia
Construction of the Fuzzy Rules and respective Parameters

IF *(Input1 is A AND Input2 is B) THEN Output is C*

Input1 – Distance from Downtown to the Property

Input2 – Distance from the nearest Metro Station to the Property

Output – The selling Price of the Property

\[X_1 \rightarrow \text{Fuzzy Decision Making Unit} \rightarrow Y \]

\[X_2 \rightarrow \]
5 Assumed Membership Functions for the Inputs X_1 and X_2

Triangular (Sharp) Membership Functions
- VC – Very Close
- CL – Close
- FR – Far

Gaussian (Smooth) Membership Functions
- MD – Medium
- VF – Very Far
Fuzzy Rule Base of $5 \times 5 = 25$ Fuzzy Rules generated by the Expert (the Dealer) in Case of 5 Membership Functions for X_1 and X_2

<table>
<thead>
<tr>
<th>X2</th>
<th>X1</th>
<th>Very Close</th>
<th>Close</th>
<th>Medium</th>
<th>Far</th>
<th>Very Far</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Far</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Far</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Very Close</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Maximal Price (the most expensive property) Relative Price
3 Assumed Membership Functions for the Inputs X_1 and X_2

Triangular (Sharp) Membership Functions

Gaussian (Smooth) Membership Functions

CL – Close
MD – Medium
FR – Far
Fuzzy Rule Base of $5 \times 3 = 15$ Fuzzy Rules generated by the Expert (the Dealer) in Case of 5 Membership Functions for X_1 and 3 Membership Functions for X_2

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>Very Close</th>
<th>Close</th>
<th>Medium</th>
<th>Far</th>
<th>Very Far</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Maximal Price (the most expensive property)
Results from the Fuzzy Decision about the Price of the Property:
Fuzzy Rule Base with $5 \times 5 = 25$ Fuzzy Rules

Areas with **equal prices** of the property in the different parts of the City
Results from the Fuzzy Decision about the Price of the Property:

Fuzzy Rule Base with $5 \times 3 = 15$ Fuzzy Rules

Areas with equal prices of the property in the different parts of the City

Triangular Membership Functions

Gaussian Membership Functions
Discussions and Concluding Remarks:

• The Fuzzy Decision makes it possible to combine different factors (input parameters) that influence the selling price of the property.

• **The problem is: how many** input parameters to include? Obviously two only parameters (X_1 and X_2) are insufficient to make a realistic decision about price!

• **However**, increasing the number of the input parameters creates another problem, related to the construction of the Fuzzy Rule Base. FRB is growing in size (number of rules) **exponentially** (combinatorial explosion)!

• The accurate tuning of the parameters of the Membership Functions is mandatory for good results!
Thank you!

The Fuzzy Concept:
Precision is not true!
The truth is not precise!